- The symbol for Avogadro’s number is NA and it is equal with 6.02 mol-1. Any 1 mol of any substance contains 6.02210 23 fundamental units. A fundamental unit can be atoms (e.g. Iron, Fe), molecules (e.g. Oxygen, O 2) or formula units (e.g.
- 0.450 mole of Fe contains how many atoms? Solution: Start from the box labeled 'Moles of.

Avogadro Number Calculations II
How Many Atoms or Molecules?
The value I will use for Avogadro's Number is 6.022 x 1023 mol¯1.
Avogadro's number is 6.02 x 10 23. It is the number of particles in a mole. You can use Avogadro's number to convert between mass and the number of molecules of any pure substance. If you are given the mass of a sample (such as a snowflake), convert the mass to moles, and then use Avogadro's number to convert from moles to molecules. Mole, Mass & Avogadro Constant. An amount of substance containing 6.02 × 10 23 particles is called a mole (often abbreviated to mol). 6.02 × 10 23 is called the Avogadro Constant or Avogadro's Number. The following diagram shows how to convert between Mass, Mole and Number of particles. Scroll down the page for more examples and solutions.
Types of problems you might be asked look something like these:
0.450 mole of Fe contains how many atoms? (Example #1)0.200 mole of H2O contains how many molecules? (Example #2)
0.450 gram of Fe contains how many atoms? (Example #3)
0.200 gram of H2O contains how many molecules? (Example #4)
When the word gram replaces mole, you have a related set of problems which requires one more step.
And, two more:
0.200 mole of H2O contains how many atoms?
0.200 gram of H2O contains how many atoms?
When the word gram replaces mole, you have a related set of problems which requires one more step. In addition, the two just above will have even another step, one to determine the number of atoms once you know the number of molecules.
Here is a graphic of the procedure steps:
Pick the box of the data you are given in the problem and follow the steps toward the box containing what you are asked for in the problem.
Example #1: 0.450 mole of Fe contains how many atoms?
Solution:
Start from the box labeled 'Moles of Substance' and move (to the right) to the box labeled 'Number of Atoms or Molecules.' What do you have to do to get there? That's right - multiply by Avogadro's Number.0.450 mol x 6.022 x 1023 mol¯1 = see below for answer
Example #2: 0.200 mole of H2O contains how many molecules?
Solution:
Start at the same box as Example #1.0.200 mol x 6.022 x 1023 mol¯1 = see below for answer
The answers (including units) to Examples #1 and #2
The unit on Avogadro's Number might look a bit weird. It is mol¯1 and you would say 'per mole' out loud. The question then is WHAT per mole?
The answer is that it depends on the problem. In the first example, I used iron, an element. Almost all elements come in the form of individual atoms, so the correct numerator with most elements is 'atoms.' (The exceptions would be the diatomic elements plus P4 and S8.)
So, doing the calculation and rounding off to three sig figs, we get 2.71 x 1023 atoms. Notice 'atoms' never gets written until the end. It is assumed to be there in the case of elements. If you wrote Avogadro's Number with the unit atoms/mol in the problem, you would be correct.

The same type of discussion applies to substances which are molecular in nature, such as water. So the numerator I would use in example #2 is 'molecule' and the answer is 1.20 x 1023 molecules.
Once again, the numerator part of Avogadro's Number depends on what is in the problem. Other possible numerators include 'formula units,' ions, or electrons. These, of course, are all specific to a given problem. When a general word is used, the most common one is 'entities,' as in 6.022 x 1023 entities/mol.
Keep this in mind: the 'atoms' or 'molecules' part of the unit is often omitted and simply understood to be present. However, it will often show up in the answer. Like this:
0.450 mol x 6.022 x 1023 mol¯1 = 2.71 x 1023 atoms
It's not that a mistake was made, it's that the 'atoms' part of atoms per mole was simply assumed to be there.
Example #3: 0.450 gram of Fe contains how many atoms?
Example #4: 0.200 gram of H2O contains how many molecules?
Look at the solution steps in the image above and you'll see we have to go from grams (on the left of the image above) across to the right through moles and then to how many atoms or molecules.
Mole And Avogadro's Number Ppt
Solution to Example #3:
Step One (grams ---> moles): 0.450 g / 55.85 g/mol = 0.0080573 molStep Two (moles ---> how many): (0.0080573 mol) (6.022 x 1023 atoms/mol) = 4.85 x 1021 atoms
Solution to Example #4:
Step One: 0.200 g / 18.015 g/mol = 0.01110186 molStep Two: (0.01110186 mol) (6.022 x 1023 molecules/mol) = 6.68 x 1021 molecules
Example #5: Calculate the number of molecules in 1.058 mole of H2O
Solution:
(1.058 mol) (6.022 x 1023 mol¯1) = 6.371 x 1023 molecules
Example #6: Calculate the number of atoms in 0.750 mole of Fe
Solution:
(0.750 mol) (6.022 x 1023 mol¯1) = 4.52 x 1023 atoms (to three sig figs)
Example #7: Calculate the number of molecules in 1.058 gram of H2O
Solution:
(1.058 g / 18.015 g/mol) (6.022 x 1023 molecules/mole)Here is the solution set up in dimensional analysis style:
1 mol | 6.022 x 1023 | |||
1.058 g x | ––––––––– | x | –––––––––– | = 3.537 x 1022 molecules (to four sig figs) |
18.015 g | 1 mol | |||
↑ grams to moles ↑ | ↑ moles to ↑ molecules |
Example #8: Calculate the number of atoms in 0.750 gram of Fe
(0.750 gram divided by 55.85 g/mole) x 6.022 x 1023atoms/mole1 mol | 6.022 x 1023 | |||
0.750 g x | ––––––––– | x | –––––––––– | = 8.09 x 1021 atoms (to three sig figs) |
55.85 g | 1 mol |
Example #9: Which contains more molecules: 10.0 grams of O2 or 50.0 grams of iodine, I2?
Solution:
Basically, this is just two two-step problems in one sentence. Convert each gram value to its mole equivalent. Then, multiply the mole value by Avogadro's Number. Finally, compare these last two values and pick the larger value. That is the one with more molecules.
1 mol | 6.022 x 1023 | |||
10.0 g x | ––––––––– | x | –––––––––– | = number of O2 molecules |
31.998 g | 1 mol |
1 mol | 6.022 x 1023 | |||
50.0 g x | ––––––––– | x | –––––––––– | = number of I2 molecules |
253.8 g | 1 mol |
Example #10: 18.0 g of H2O is present. (a) How many oxygen atoms are present? (b) How many hydrogen atoms are present?
Solution:
1) Convert grams to moles:
18.0 g / 18.0 g/mol = 1.00 mol
2) Convert moles to molecules:
(1.00 mol) (6.02 x 1023 mol¯1) = 6.02 x 1023 molecules
3) Determine number of atoms of oxygen present:
(6.02 x 1023 molecules) (1 O atom / 1 H2O molecule) = 6.02 x 1023 O atoms
4) Determine number of atoms of hydrogen present:
(6.02 x 1023 molecules) (2 H atoms / 1 H2O molecule) = 1.20 x 1024 H atoms (to three sig figs)
Notice that there is an additional step (as seen in step 3 for O and step 4 for H). You multiply the number of molecules times how many of that atom are present in the molecule. In one molecule of H2O, there are 2 atoms of H and 1 atom of O.
Sometimes, you will be asked for the total atoms present in the sample. Do it this way:
(6.02 x 1023 molecules) (3 atoms/molecule) = 1.81 x 1024 atoms (to three sig figs)
The 3 represents the total atoms in one molecule of water: one O atom and two H atoms.
Example #11: Which of the following contains the greatest number of hydrogen atoms?
(a) 1 mol of C6H12O6
(b) 2 mol of (NH4)2CO3
(c) 4 mol of H2O
(d) 5 mol of CH3COOH
Solution:
1) Each mole of molecules contains N number of molecules, where N equals Avogadro's Number. How many molecules are in each answer:
(a) 1 x N = N
(b) 2 x N = 2N
(c) 4 x N = 4N
(d) N x 5 = 5N
2) Each N times the number of hydrogen atoms in a formula equals the total number of hydrogen atoms in the sample:
(a) N x 12 = 12N(b) 2N x 8 = 16N
(c) 4N x 2 = 8N
(d) 5N x 4 = 20N
Mole Avogadro's Number Worksheet
(d) is the answer.
Example #12: How many oxygen atoms are in 27.2 L of N2O5 at STP?
Solution:
1) Given STP, we can use molar volume:
27.2 L / 22.414 L/mol = 1.21353 mol
2) There are five moles of O atoms in one mole of N2O5:
(1.21353 mol N2O5) (5 mol O / 1 mol N2O5) = 6.06765 mol O
3) Use Avogadro's Number:
(6.06765 mol O) (6.022 x 1023 atoms O / mole O) = 3.65 x 1024 atoms O (to three sig figs)
Example #13: How many carbon atoms are in 0.850 mol of acetaminophen, C8H9NO2?
Solution:
1) There are 8 moles of C in every mole of acetaminophen:
(0.850 mol C8H9NO2) (8 mol C / mol C8H9NO2) = 6.80 mol C
2) Use Avogadro's Number:
(6.80 mol C) (6.022 x 1023 atoms C / mole C) = 4.09 x 1024 atoms C (to three sig figs)
Example #14: How many atoms are in a 0.460 g sample of elemental phosphorus?
Solution:
Phosphorus has the formula P4. (Not P!!)0.460 g / 123.896 g/mol = 0.00371279 mol
(6.022 x 1023 molecules/mol) (0.00371279 mol) = 2.23584 x 1021 molecules of P4
(2.23584 x 1021 molecules) (4 atoms/molecule) = 8.94 x 1021 atoms (to three sig figs)
Set up using dimensional analysis style:
1 mol | 6.022 x 1023 molecules | 4 atoms | ||||
0.460 g x | –––––––– | x | –––––––––––––––––– | x | ––––––––– | = 8.94 x 1021 atoms |
123.896 g | 1 mol | 1 molecule |
Example #15: Which contains the most atoms?
(a) 3.5 molecules of H2O
(b) 3.5 x 1022 molecules of N2
(c) 3.5 moles of CO
(d) 3.5 g of water
Solution:
The correct answer is (c). Now, some discussion about each answer choice.Choice (a): You can't have half of a molecule, so this answer should not be considered. Also, compare it to (b). Since (a) is much less than (b), (a) cannot ever be the answer to the most number of atoms.
Choice (b): this is a viable contender for the correct answer. Since there are two atoms per molecule, we have 7.0 x 1022 atoms. We continue to analyze the answer choices.
Choice (c): Use Avogadro's number (3.5 x 1023 mol¯1) and compare it to choice (b). You should be able to see, even without the 3.5 moles, choice (c) is already larger than choice (b). Especially when you consider that N2 and CO both have 2 atoms per molecule.
Choice (d): 3.5 g of water is significantly less that the 3.5 moles of choice (c). 3.5 / 18.0 equals a bit less that 0.2 moles of water.
Bonus Example: A sample of C3H8 has 2.96 x 1024 H atoms.
(a) How many carbon atoms does the sample contain?
(b) What is the total mass of the sample?
Solution to (a):
1) The ratio between C and H is 3 to 8, so this:
3 | y | |
––––––– | = | –––––––––––––––– |
8 | 2.96 x 1024 H atoms |
2) will tell us the number of carbon atoms present:
y = 1.11 x 1024 carbon atoms
3) By the way, the above ratio and proportion can also be written like this:
3 is to 8 as y is to 2.96 x 1024Be sure you understand that the two different ways to present the ratio and proportion mean the same thing.
Solution to (b) using hydrogen:
1) Determine the moles of C3H8 present.
2.96 x 1024 / 8 = 3.70 x 1023 molecules of C3H8
2) Divide by Avogadro's Number:
3.70 x 1023 / 6.022 x 1023 mol¯1 = 0.614414 mol <--- I'll keep some guard digits
3) Use the molar mass of C3H8:
0.614414 mol times 44.0962 g/mol = 27.1 g (to three sig figs)
Learning Objective
- Define and memorize Avogadro’s number
Key Points
- The mole allows scientists to calculate the number of elementary entities (usually atoms or molecules) in a certain mass of a given substance.
- Avogadro’s number is an absolute number: there are 6.022×1023 elementary entities in 1 mole. This can also be written as 6.022×1023 mol-1.
- The mass of one mole of a substance is equal to that substance’s molecular weight. For example, the mean molecular weight of water is 18.015 atomic mass units (amu), so one mole of water weight 18.015 grams.
Term
- moleThe amount of substance of a system that contains as many elementary entities as there are atoms in 12 g of carbon-12.
The chemical changes observed in any reaction involve the rearrangement of billions of atoms. It is impractical to try to count or visualize all these atoms, but scientists need some way to refer to the entire quantity. They also need a way to compare these numbers and relate them to the weights of the substances, which they can measure and observe. The solution is the concept of the mole, which is very important in quantitative chemistry.
Avogadro’s Number
Amadeo Avogadro first proposed that the volume of a gas at a given pressure and temperature is proportional to the number of atoms or molecules, regardless of the type of gas. Although he did not determine the exact proportion, he is credited for the idea.
Avogadro’s number is a proportion that relates molar mass on an atomic scale to physical mass on a human scale. Avogadro’s number is defined as the number of elementary particles (molecules, atoms, compounds, etc.) per mole of a substance. It is equal to 6.022×1023 mol-1 and is expressed as the symbol NA.
Avogadro’s number is a similar concept to that of a dozen or a gross. A dozen molecules is 12 molecules. A gross of molecules is 144 molecules. Avogadro’s number is 6.022×1023 molecules. With Avogadro’s number, scientists can discuss and compare very large numbers, which is useful because substances in everyday quantities contain very large numbers of atoms and molecules.
The Mole
The mole (abbreviated mol) is the SI measure of quantity of a “chemical entity,” such as atoms, electrons, or protons. It is defined as the amount of a substance that contains as many particles as there are atoms in 12 grams of pure carbon-12. So, 1 mol contains 6.022×1023 elementary entities of the substance.
Chemical Computations with Avogadro’s Number and the Mole
Avogadro’s number is fundamental to understanding both the makeup of molecules and their interactions and combinations. For example, since one atom of oxygen will combine with two atoms of hydrogen to create one molecule of water (H2O), one mole of oxygen (6.022×1023 of O atoms) will combine with two moles of hydrogen (2 × 6.022×1023 of H atoms) to make one mole of H2O.
Another property of Avogadro’s number is that the mass of one mole of a substance is equal to that substance’s molecular weight. For example, the mean molecular weight of water is 18.015 atomic mass units (amu), so one mole of water weight 18.015 grams. This property simplifies many chemical computations.
If you have 1.25 grams of a molecule with molecular weight of 134.1 g/mol, how many moles of that molecule do you have?
[latex]1.25g times frac{ 1 text{ mole}}{134.1g}=0.0093 text{ moles}.[/latex]
Show SourcesBoundless vets and curates high-quality, openly licensed content from around the Internet. This particular resource used the following sources:
http://www.boundless.com/
Boundless Learning
CC BY-SA 3.0.
http://www.chem1.com/acad/webtext/intro/int-2.html#SEC2
Steve Lower’s Website
CC BY-SA.
http://en.wiktionary.org/wiki/mole
Wiktionary
CC BY-SA 3.0.
http://en.wikipedia.org/wiki/Mole_(unit)
Wikipedia
CC BY-SA 3.0.
Avogadro's Number Song
http://en.wikipedia.org/wiki/Avogadro_constant
Wikipedia
CC BY-SA 3.0.
Mole Avogadro's Number Worksheet
http://en.wikipedia.org/wiki/Avogadro_constant%23mediaviewer/File:Avogadro_Amedeo.jpg
Wikimedia
Public domain.
